

Grassland on drained peatland emits on average more than 30 t CO₂-eq ha⁻¹ a⁻¹

- In northwestern Germany 54 % of peatlands are used as grasslands
- Almost all near-natural peatlands have either remained pristine (very few) or were restored after peat extraction

Several options to re-establish carbon sink function of bogs formerly used as grasslands

- 1) Minimizing greenhouse gas emissions from the soil
 - → Rewetting?
 - → Topsoil-removal
- 2) Establishing peat-forming vegetation
 - → Inoculation with Sphagnum fragments?

Without topsoil removal a large number of grassland diaspores remains available

Vegetation strongly different with growing overlap between TSR and Sphagnum spreading

Rosinski et al. 2021 in press

Strong development of the moss layer with less growth and more spatial variability in the TSR60 plot

Annual CO₂ budgets from 2017-09 to 2019-09 show hypothesised pattern (and some surprises)

Annual CO₂ budgets from 2017-09 to 2019-09 show hypothesised pattern (and some surprises)

PPFD + Luft-T + Boden-T + Veg-Höhe + Effektive T

Annual CO₂ budgets from 2017-09 to 2019-09 show hypothesised pattern (and some surprises)

PPFD + Luft-T + Boden-T + Veg-Höhe + Effektive T

Greenhouse gas balance of an establishing Sphagnum culture on a former bog grassland in Germany

A. Günther¹, G. Jurasinski¹, K. Albrecht¹, G. Gaudig², M. Krebs² and S. Glatzel³

¹Department of Landscape Ecology, University of Rostock, Germany
²Institute of Botany and Landscape Ecology, Ernst Moritz Arndt University of Greifswald,
partner in Greifswald Mire Centre, Germany
³Department of Geography and Regional Research, University of Vienna, Austria

SUMMARY

The cultivation of *Sphagnum* mosses on re-wetted peat bogs for use in horticulture is a new land use strategy. We provide the first greenhouse gas balances for a field-scale Sphagnum farming experiment on former bog grassland, i exchange of the exchange of the company of the

trend was stronger for *S. papitiosum*. In contrast, the estimated CO₂ fluxes did not show a significant temporal trend over the study period. The production strips of both *Sphagnum* species were net GHG sinks of 5–9 t ha⁻¹ a⁻¹ (in CO₂-equivalents) during the establishment phase of the moss carpets. In comparison, the ditches were a CO₂ source instead of a CO₂ sink and emitted larger amounts of CH₄, resulting in net GHG release of ~11 t ha⁻¹ a⁻¹ CO₂-equivalents. We conclude that Sphagnum farming fields should be designed to minimise the area covered by irrigation ditches. Overall, Sphagnum farming on bogs has lower on-field GHG emissions than low-intensity agriculture.

A combination of an establishing Sphagnum carpet and resprouting of grassland vegetation?

Annual CH₄ budgets from 2017-09 to 2019-09 show effectiveness of TSR (and some surprises)

Annual CH₄ budgets from 2017-09 to 2019-09 show effectiveness of TSR (and some surprises)

While GHG exchange is as desired after TSR and Sphagnum spreading, there is an elephant in the room

What is the climate effect of the tested restoration approaches?

Following Günther et al. 2020

What is the climate effect of the tested restoration approaches (assuming measured exchange rates)?

ts_immediate: C export by TSR is accounted as CO2 emission in the year of extraction (IPCC, 2006)

ts_25-1perc: 25-1% annual decomposition of C in TSR expressed as CO2 emission

noacc: C export by TSR is not accounted as CO2 emission

Huth & Günther et al. under revision

Results suggest a TSR sufficient to achieve nutrient-poor and acidic conditions for *Sphagnum* spp. establishment

- Rewetting alone reduced net CO₂ emissions by approx. 75% but substantially increased CH₄ emissions
- After top soil removal (TSR) CO₂ and CH₄ emissions were close to zero
- Sphagnum spp. introduction lead to development of a substantial moss carpet with immediate C sequestration
- Climate warming effect of rewetting with shallow TSR is lower than rewetting nutrient-rich peatlands after a few decades the latest (timeframe depends on fate of the removed topsoil C)

