

INTRO

Country	Total Area	Peatland	% of total	SOC 6 – 12 %	SOC > 12 %
	(ha)	Area (ha)	Area	(ha)	(ha)
Denmark	4 309 400	171 000	3.95	98 080	73 523

> 25 % of agricultural GHG emissions

DESIGN

AIMS

Danish peatlands have different soil properties -> There must be differences in GHG emissions -> But can we reduce these on all sites with paludiculture?

- #1: Determine magnitudes of emissions from soil respiration for different drained agricultural peatlands in Denmark
- #2: Assess the greenhouse gas mitigation potential for these sites by rewetting and paludiculture
- #3: Determine soil-, and site-specific drivers for emissions and the mitigation potential by paludiculture

METHODS

#1: Opaque chamber measurements

- CO_2 , CH_4 and N_2O , biweekly from 07/19 to 07/20
 - Extrapolation to cumulative annual values
 - \circ GWP's for CH₄ = 34, and N₂O = 298

2: Soil

• Analysed in segments for TN and TC; BD and pH; Fe, K, P, S (on ICP); von Post

3: Primary productivity

Mesocosm biomass cut twice annually, biweekly determination of plant development

GHG FLUXES

DB: Drained (-40cm), bare WB: Wet (-5cm), bare WC: Wet (_5cm), cultivated

METHANE FLUXES

N₂O FLUXES

CO₂ DYNAMICS

SOIL PROPERTIES

1.5-

AARHUS

GWP

- Carbon Dioxide:
- Reduction between 37 %(SV) 127 % (SE)
- Two C-sinks:
- 0 Ø
- Selkær Enge
- Methane:
- Overall increase (55 120%)
- Nitrous Oxide:
- Negligible

CLAUDIA NIELSEN CLAUDIA@AGRO.AU.DK

GWP

- Reduction of GHG
- o 44 % (SV)
- o 83 % (LV)
- o 85 % (V)
- o 102 % (Ø)
- 145 % (SE)

CLAUDIA NIELSEN

CLAUDIA@AGRO.AU.DK

KEY MESSAGES

- #1: Rewetting alone (WB) reduced total CO₂eq ha⁻¹ yr⁻¹ from DB by 24 % 64 %
- #2: RCG cultivation reduced CO_2 eq ha⁻¹ yr⁻¹ by 37 % 127 % (44 % 145%) compared to DB (and estimated: dry, cultivated)
- #3: RCG paludiculture reduced CH_4 by on avg. 33 % as compared to WB
- #4: Soils with low TC % and high Fe and S content (fens) emit more than bogs when drained, but can be C sinks with paludiculture

Site-specific differences in GHG dynamics for Danish peatlands:

Paludiculture promising to mitigate by min. 44% as compared to BAU

