

Innovate UK

University of East London

GREENHOUSE GAS BENEFITS OF SPHAGNUM FARMING (UK) USING MICROPROPAGATED MATERIAL

Anna Keightley^b, Neal Wright^a, Simon Caporn^b, Chris Field^b Richard Lindsay^c, Jack Clough^c, Paul Thomas^d, Catherine Dawson^e a – e: project partners; f: funders; g: landowner permissions

SŠ

BeadaM

Sustainably Produced Sphagnum

Sphagnum palustre

- Fast-growing
- Resilient
- Growing media choice

BeadaMoss[®] products used

BeadaGel™

BeadaHumok™

Little Woolden Moss planting: BeadaGel[™] April 2019; BeadaHumok[™] October 2018 BeadaMoss[®] company: http://www.beadamoss.co.uk/

Project sites

Carbon GHG measurements

- Los Gatos UGGA and closed chamber system
- CO₂ and CH₄
- Net Ecosystem Respiration (NER) (dark) x 2 minutes
- Net Ecosystem Exchange (NEE) (light) x 2 minutes
- Monthly visits
- All treatments, covers removed
- Environmental variables (peat temperature and PAR)
- Sphagnum cover measurement

$$Flux = \frac{\Delta CO2}{t} * \frac{PV}{RT} * \frac{1}{As} * \left(\frac{44*60*60}{1000}\right) \text{g CO}_2 \text{ m}^{-2} \text{ s}^{-1}$$
Adapted from Dossa *et al.*

NEE (Net CO₂ uptake) increases with Sphagnum cover

Mean PAR: 1365 ± 463 μ mol m⁻² s⁻¹ Mean Peat Temp at 5cm depth: 16.8 ± 2.5 °C

- Little Woolden Moss site
 only
- May to September 2019 data

< NO00

NEE across cover treatments and irrigation regimes

Mean WTD -15.9 ± 10.8 cm

Mean WTD -18.3 ± 9.8 cm

Little Woolden Moss site only, combined BeadaHumok^M and BeadaGel^M data, May to September 2019, *n* = 10 throughout In box plots, crosses indicate the mean value, lines indicate the median, and interquartile median range is inclusive Shared letters indicate statistically significant differences on post-hoc Tukey HSD tests where *p* < 0.05

NEE between Sphagnum types and irrigation regimes

Little Woolden Moss site only, May to September 2019 data, n = 20 throughout In box plots, crosses indicate the mean value, lines indicate the median, and interquartile median range is inclusive Shared letters indicate statistically significant differences on post-hoc Tukey HSD tests where p < 0.05

Methane fluxes negligible

Little Woolden Moss site only, measured in the dark, May to September 2019 data, *n* = 10 throughout In box plots, crosses indicate the mean value, lines indicate the median, and interquartile median range is inclusive

Site water table stabilising

Summary Observations and Questions

Summary:

- Net CO₂ uptake improves with greater *Sphagnum* area cover
- Spray irrigation more successful than Drip irrigation (growth-related)
- *Sphagnum* protective covers improve net CO₂ uptake (growth-related)
- Net CO₂ uptake better with *Sphagnum* than not
- These methods do not facilitate methane emission

Questions:

- CGHG flux under covers (light reduction: mesh 20.0 ± 2.3 %, plastic 63.1 ± 2.3 %)
- N₂O contribution (agri-soils particularly) and DOC: not known
- CGHG budget more data/reduced treatments needed for modelling

- Beneficial *Sphagnum* farming methods identified: BeadaMoss[®], irrigation regime, cover material
- Field–scale trials in progress
- Potential for both economic returns and Carbon GHG benefits

Innovate UK

University of East London

Thank you!

a – e: project partners; f: funders; g: landowner permissions

