

Paludiculture worldwide: Is there a need to differentiate the concept?

Wendelin Wichtmann and Hans Joosten

Rewetting of peatlands

- abandon the site → natural development
- implement paludiculture → regular management
 - →→ provision of ecosystem services with different focuses

Paludiculture, productive use of wet peatlands*

Agricultural or forestry use of wet and rewetted peatlands

> spontaneously grown or cultivated biomass from wet peatlands is used under conditions in which the peat is conserved or even newly formed

-> allows the re-establishment and mair Tan/Lupascu/Wijedasa 2020: Paludiculture as a sustainwet peatlands

able land use alternative for tropical peatlands: A review

- Paludiculture or wet agriculture is a sustainable land use alternative on peatlands.
- Paludiculture should be carbon-neutral or negative in the long-term.
- Wet and rewetted peatlands represent two different management pathways.
- Vegetation selected for paludiculture should be sourced from native species.
- Paludiculture in the tropics is heavily influenced by socioeconomic considerations.

To make it short:

Peat preservation + agriculture/forestry = Paludiculture!

→ sustainable use of peatlands

What are the main requirements for paludiculture?

- Site conditions (e.g. fen peatlands in temperate zone)
 - permanent wet conditions in which the peat is conserved or even newly formed
 - →low net emissions of greenhouse gases and nutrients compared to drained situation

Agriculture

- Paradigm shift from drainage to rewetted peatlands
- Vegetation: spontaneously grown or cultivated plant species
 - → productive use of biomass

Plants that thrive in temperate wet peatlands

Gramineous, mosses or arboreal vegetation

DPPP - Greifswald Mire Centre (greifswaldmoor.de)

Benefits from paludiculture

Several ecosystem services can be achieved by paludiculture, e. g.:

- production of biomass
- carbon sequestration and storage
- biodiversity, water and nutrient retention, local climate cooling,

Productive use of wet peatlands – what does this mean

- Individual economic interest is at the forefront of any form of management of land - including peatlands:
 - → sale of biomass-products from paludiculture
 - →direct payments (EU) and/or premiums for Ecosystem Services
 - → contractual nature conservation
 - →or the sum of these income options

Economics of paludiculture

only biomass production is paid

Other Ecosystem Services as a free by-product

Economics of paludiculture

subsistence farming

It is necessary to generate income from other sources

Economics of paludiculture

combination of different sources for income generation

combination of different incomes makes Paludiculture profitable

On the long run:

→independent Paludiculture economy must be developed

Ecosystem Services provided by paludiculture should be rewarded

- → Markets for services must be developed
- → A certification system should be established
- → A regular monitoring of compliance with the framework conditions demanded by paludiculture must be installed

Threats for reaching the main goals

People always try to optimize and improve the economic situation, which stimulates higher GHG emissions

Site conditions and management

- wetland plants often have a large water level amplitude
 - → higher yield could be produced with lower water tables
- lower water tables allow conventional machinery for harvesting
 - → no investment in adapted machinery necessary

Water supply / medium water tables

- wrong prioritization of water use can cause summer droughts
- not enough water to maintain peat conserving conditions

Nature conservation

- prefers moist meadows instead of wet grasslands or reeds because of higher biodiversity values
- →higher GHG emissions

Paludiculture light?

- Insuffcient rewetting
- → eg. subsurface irrigation:

GHG emissions may even be higher, as a good water supply of the aerated topsoil leads to higher mineralization rates

Paludiculture, quo vadis?

Weak implementation of rewetting measures

- farmers and landowners can accustom themselves stepwise
- still conventional like management of peatlands is feasible

If Paludi-light is implemented as a first step, further steps have to be taken subsequently:

- multiple step approach would be costly, tediously and tiring
- farm operating concepts cannot change with the wind every year
- reaching same level of Ecosystem Services provision at much higher costs

Paludiculture – must the concept be differentiated?

No!

- The Paludiculture concept is open for
 - new plant species and
 - new adapted management schemes

The decisive conditions must be maintained

- high watertables → stop peat loss & low emissions (GHG, nutrients)
- Productive utilisation of biomass

The real need is to concentrate on

- reaching 100% rewetting of degraded peatlands as soon as possible
- → implementation of Paludiculture is an excellent solution!

