Waternet waterschap amstel gooi en vech gemeente amsterdam

Will Dutch water management strategies result in a transition of peatland use?

Henk van Hardeveld Joris Westenend

Problem

Top-down raise in water levels \rightarrow locked-in conflicts with farmers and inhabitants

Consensus possible on gradual raise of water levels \rightarrow only gradual changes

Faster change with paludiculture and carbon credits? Which water management?

Approach

Impact assessment of water management strategies, with timeframe 2020–2100:

- (1) Traditional water level management: levels 35–60 cm below soil surface, levels adjusted for soil subsidence
- (2) Levels not adjusted for soil subsidence

 → progressively higher water levels
 relative to the soil surface
- (3) Raised water levels:

waternet

han amstel gooi en vech

levels 10–30 cm below soil surface, levels not adjusted for soil subsidence

Regional projection of IPCC '13 scenario with mid-century 2.0 °C temperature rise

Research area: Polder de Ronde Hoep, an agricultural peatland polder of 11.9 km² near Amsterdam

Impact assessment

RE:PEAT template on the Tygron Geodesign Platform Van Hardeveld et al. (2019) https://doi.org/10.1016/j.envsoft.2019.06.001

🗋 waternet

schap amstel gooi en vecht

- Water levels, groundwater tables and soil subsidence assessed with a sitespecific empirical regression, at 10-year intervals adjusted for temperature
 Van Hardeveld et al. (2017) https://doi.org/10.1016/j.eiar.2017.06.007
- CO₂ emissions derived from peat oxidation, CH₄ and N₂O emissions assessed with empirical regressions

Van den Akker et al. (2008) <u>http://edepot.wur.nl/159747</u> Couwenberg et al. (2011) <u>http://dx.doi.org/10.1007/s10750-011-0729-x</u> Motelica-Wagenaar et al. (2020) <u>https://doi.org/10.5194/piahs-382-635-2020</u>

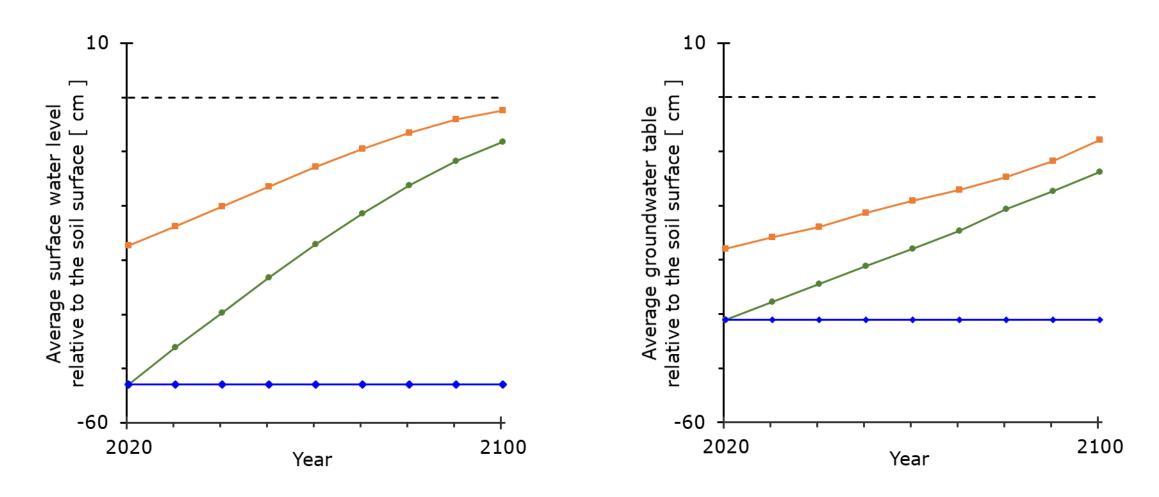
 Crop yield of grass assessed with Watervision Agriculture

Hack-ten Broeke et al. (2016) <u>https://doi.org/10.5194/soil-2-391-2016</u>

Tygron Geodesign Platform GPU-based: up to 100,000 tasks parallel Calculation with 25m² resolution: 23 sec.

Impact assessment

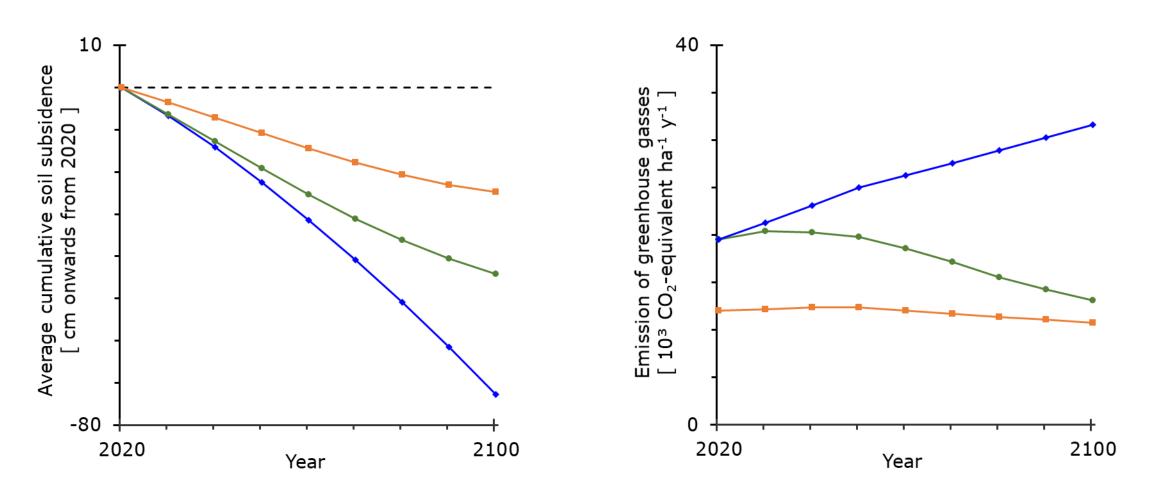
Switch in land use when Net Value Added paludiculture > Net Value Added dairy farming


Net Value Added dairy farming: max. \in 1,550 ha⁻¹ y⁻¹ (current market conditions)

- Income: (milk production × milk price) + CAP subsidy
- Costs: interest, depreciation, maintenance + ((cattle feed crop yield) × feed price)

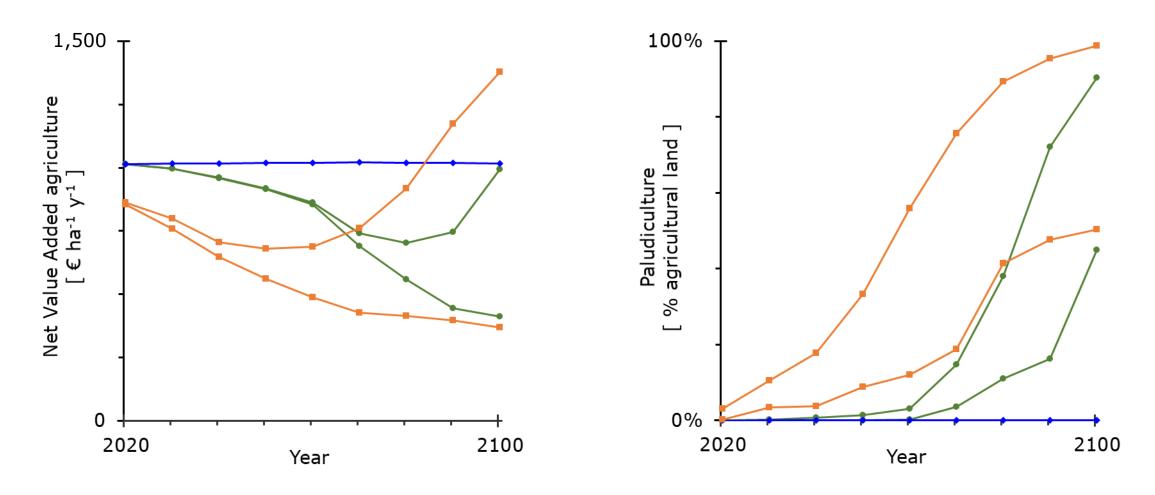
Net Value Added paludiculture (in general): max. € 650–1,550 ha⁻¹ y⁻¹

- Income: crop yield × market price
- Costs: interest, depreciation, maintenance
- Upper boundary: biomass as building material
- Lower boundary: fodder crops as feed for cattle
- Estimation crop yield: optimal when groundwater table < 20 cm below surface


Results

--- (1) Traditional water level management

- --- (2) Progressively higher water levels
- --- (3) Raised water levels


Results

--- (1) Traditional water level management

- --- (2) Progressively higher water levels
- --- (3) Raised water levels

Results

--- (1) Traditional water level management

- --- (2) Progressively higher water levels
- --- (3) Raised water levels

• A transition from dairy farming to paludiculture

chap amstel gooi en vech

- will not occur with traditional water level management
- will take the entire 21st century with progressively higher water levels
- can be accelerated by raising water levels
- Price of carbon credits / 10^3 CO₂-eq. needed to redistribute costs and benefits:

Strategy		2020	2060	2100
Progressively higher water levels	Upper boundary	not an option	€170	€95
	Lower boundary	not an option	€180	€5
Raised water levels	Upper boundary	€20	€45	€0
	Lower boundary	€20	€70	€75

What's next?

Suggestions for (collaborative) policy:

- Viable upper boundary: raise water levels enthusiastically, switch to paludiculture
- Viable lower boundary: raise water levels, combine paludiculture and dairy farming
- No short term viability: switch from traditional management to intermediate strategies
- Consider a broad(er) range of costs, benefits, and ecosystem services

Further research:

nap amstel gooi en vech

- Improved assessments, using new results of paludiculture and GHG research
- Impacts assessment of intermediate short term water management strategies
- Broader RE:PEAT template: habitat meadow birds and other biodiversity indicators
- RE:PEAT for the entire 1,800 km² "green heart" of the western part of the Netherlands

Questions?

TET & BILL

Robert

henk.van.hardeveld@waternet.nl

8