

Plant selection for paludiculture:

water and nutrient level optima differ among Typha species

- Highly productive wetland species: 2.2 22.1 t ha⁻¹ a⁻¹ dry matter (Wichtmann & Joosten 2007; Dubbe, Garver & Pratt 1988)
- Benefits at cultivation site:
 - Nutrient removal (Vroom et al. 2018; Grosshans 2014; IISD 2013; Ciria, Solano & Soriano 2005)
 - GHG mitigation (Vroom et al. 2018; Grosshans 2014; IISD 2013)
 - Habitat improvement (Grosshans 2014; IISD 2013)
- Biomass
 - Bioenery (e.g. pellets, bioethanol) (Rebaque et al. 2017; Grosshans 2014; IISD 2013; Ciria, Solano & Soriano 2005; Dubbe, Garver & Pratt 1988)
 - Insulation & building material (Colbers et al. 2017; Georgiev et al. 2014; Krus et al. 2014; Wichtmann & Joosten 2007)

PALUDI

CULTURE

Paludi-PRIMA

Experimentelle Pflanzenökologie

Main goals (Universität Greifswald & LFA MV 2018)

- Optimal yield and biomass quality
 - suitable clones (*Phragmites*) or species (*Typha*)?
 - cultivation method, harvest method, harvest timing?
 - water level & nutrient availability?
- Costs and profits
- Legal framework

PALUDI

Paludi-PRIMA

Experimentelle Pflanzenökologie UNIVERSITÄT GREIFSWALD Wissen lockt. Seit 1456

Main goals (Universität Greifswald & LFA MV 2018)

- Optimal yield and biomass quality
 - suitable clones (*Phragmites*) or species (*Typha*)?
 - cultivation method, harvest method, harvest timing?
 - water level & nutrient availability?
- Costs and profits
- Legal framework

4 10 Mar 2021

Research question

Where are the growth optima of *Typha latifolia* and *Typha angustifolia* along water and nutrient gradients?

Mesocosm experiment

- May 2019 to February 2020
- T. angustifolia & T. latifolia
- Gradient design, 15 levels in each gradient, no replications

Fertilization [kg N ha⁻¹ a⁻¹]

10 Mar 2021

Measurements

- Growth (weekly)
 - height
 - no. shoots
 - no. leaves per shoot
- Photosynthetic rate
- Biomass yield
 - Aboveground
 - Roots
 - Rhizomes

- Environmental gradient, not different treatment groups
- Nonlinear ecological responses \rightarrow shape of response pattern (Kreyling et al. 2018)

- Environmental gradient, not different treatment groups
- Nonlinear ecological responses \rightarrow shape of response pattern (Kreyling et al. 2018)

• Graphical analysis:

- Environmental gradient, not different treatment groups
- Nonlinear ecological responses \rightarrow shape of response pattern (Kreyling et al. 2018)

- Graphical analysis:
 - Local polynomial regression smoothing (loess, R)

- Environmental gradient, not different treatment groups
- Nonlinear ecological responses \rightarrow shape of response pattern (Kreyling et al. 2018)

- Graphical analysis:
 - Local polynomial regression smoothing (loess, R)
 - Significant effect of environmental driver on one species (α = 5%):
 95% Confidence interval (grey)

- Environmental gradient, not different treatment groups
- Nonlinear ecological responses \rightarrow shape of response pattern (Kreyling et al. 2018)

- Graphical analysis:
 - Local polynomial regression smoothing (loess, R)
 - Significant effect of environmental driver on one species (α = 5%):
 95% Confidence interval (grey)

- Environmental gradient, not different treatment groups
- Nonlinear ecological responses \rightarrow shape of response pattern (Kreyling et al. 2018)

- Graphical analysis:
 - Local polynomial regression smoothing (loess, R)
 - Significant effect of environmental driver on one species ($\alpha = 5\%$): 95% Confidence interval (grey)
 - Significant difference between species ($\alpha = 5\%$): 83% Confidence intervals (coloured)

CENTRE

- Environmental gradient, not different treatment groups
- Nonlinear ecological responses \rightarrow shape of response pattern (Kreyling et al. 2018)

- Graphical analysis:
 - Local polynomial regression smoothing (loess, R)
 - Significant effect of environmental driver on one species ($\alpha = 5\%$): 95% Confidence interval (grey)
 - Significant difference between species ($\alpha = 5\%$): 83% Confidence intervals (coloured)

Water levels

- T. angustifolia: •
 - no change in biomass production over water level gradient
- T. latifolia: •
 - more biomass at water levels below ground than under flooding
 - more biomass than *T. angustifolia* at all . water levels except flooding > 30 cm

CENTRE

- T. angustifolia:
 - under flooding taller but less shoots
- T. latifolia:
 - no significant effect of water level on growth parameters
 - more leaves per plant at wide range of water levels, not at extremes (- 36 cm - + 25 cm)
 - partly more shoots than T. angustifolia (- 41 cm to 4 cm & + 3 cm to + 36 cm)

CENTRE

Water levels - Photosynthesis

Both species:

- no significant change in photosynthetic rate of either species along water level gradient
- T. latifolia:
 - higher photosynthetic rate under dry conditions (- 45 cm - -6 cm)

UNIVERSITÄT GREIFSWALD

Experimentelle

Pflanzenökologie

- *T. latifolia* better producer than *T. angustifolia* regarding biomass over large part of water level gradient
- Similar pattern in photosynthetic rate and no. leaves per plant

UNIVERSITÄT GREIFSWALD

Nutrients - Biomass

Both species:

- No significant change at low and intermediate nutrient availability
- Significant decrease with increasing nutrient availability
- T. latifolia:
 - more biomass than *T. angustifolia* at intermediate nutrient availability (~ 12 180 kg N ha⁻¹ a⁻¹)

UNIVERSITÄT GREIFSWALD

Nutrients - Photosynthesis

- T. latifolia:
 - no significant change in photosynthetic rate along nutrient gradient
- T. angustifolia:
 - decrease in photosynthetic rate with increasing nutrient availability
- No significant difference between species

UNIVERSITÄT GREIFSWALD

- Decrease of biomass with increasing nutrient availability unusual (Ren et al. 2019, Geurts & Fritz (eds.) 2018) → most likely ammonia (NH₃) poisoning
- T. latifolia better producer at ~ 12 180 kg N ha⁻¹ a⁻¹ regarding biomass
- Pattern of biomass production and growth along nutrient gradient reflected in photosynthetic performance

Partner in the

- Biomass production: *T. latifolia* preferrable over *T. angustifolia* under most nutrient and water level conditions
- Biomass production still good under low nutrient availability → perspective of long-term unfertilised *Typha* paludiculture

- Biomass production of *T. latifolia* higher under dry conditions → consider other aspects of paludiculture: climate goals, peat conservation, competing vegetation
- *Typha* can continue to produce biomass even under dry conditions, lack of irrigation water

Looking forward to your questions

Today, 13:30 : Virtual excursion "Field-scale Typha paludiculture in NE Germany"

