

Economic viability of Sphagnum farming on former bog grassland

Sabine Wichmann, Silke Kumar, Matthias Krebs, Greta Gaudig

Majority of bogs in NW Germany is drained

Grassland: 44 % Peat extraction: 8 %

Sphagnum farming

Sphagnum biomass

- → sustainable alternative for degraded bogs
- → high-quality alternative to peat

Large-scale pilot sites required

- Mechanical implementation → real-life cost data
- Closing gaps of knowledge, e.g. harvested yields
- Potential for optimisation and cutting costs

Sphagnum farming on former bog grassland

→ Many presentations on Day 1!

Tanneberger et al 2017

→ Virtual excursion!

Establishment cost: 2011 vs. 2016

- Sphagnum: ~40% ↓
- Investment for water management:
 proportionate costs ~50% ↓
- Site preparation: ↑ ↑
 36% of costs

Wichmann et al. 2017, 2020

Management (2011-2016)

2016: First large-scale harvest of cultivated Sphagnum

→ real-life costs + biomass yields + regeneration potential

Sphagnum = permanent culture

Investment appraisal

Present value: management costs > establishment costs

Sensitivity analysis

Costs

Establishment: high (2011) / medium (2016)

• Management: high (2011-2016) / medium (25% \downarrow)

Yield

Productivity: low / mean / high

• Bulk density: low / high

Revenues

Market price: low / mean / high

Non-market income: none / medium payment level

(CAP, PES)

Current profitability

	Low yield	Mean yield	High yield	
Productivity [t ha ⁻¹ a ⁻¹]	3.1	4.9	6.8	
Harvested yiel [t ha ⁻¹ a ⁻¹]	2.0	3.2	4.4	
Bulk density [g L-1]	38 /20	38 20	38 20	
"Seeding material"	√	✓	✓	
Orchid cultivation	X	X ✓	X ✓	
Peat substitute	X	X	X	

Price for Sphagnum biomass / \leq m⁻³

Photos: University of Greifswald

How to improve profitability?

High potential for cost reduction

- a) Management, b) establishment (seeding material, water management, site preparation)
- → Scenario high cost vs. medium costs: Break-even price: 20% ↓

Non-market income

→ e.g. 1,300 € ha⁻¹ a⁻¹: Break-even price: 6 % ↓

Surcharge on peat free cultivated end products

- \rightarrow e.g. + 10 % end consumer = 5 x price of peat
- → Reaching break-even point of Sphagnum farming with high yields

	Average yield	DM t ha ⁻¹ yr ⁻¹	2		3.2		4.4	
	Bulk density	DM g L ⁻¹	38	20	38	20	38	20
High costs	Break-even price	€ m ⁻³	423 [397]	226 [212]	278 [262]	150 [141]	213 [201]	115 [109]
Medium costs	Break-even price	€ m ⁻³	330 [301]	177 [163]	220 [204]	119 [111]	170 [159]	93 [87]

Is Sphagnum farming an alternative to drained bog grassland?

- ✓ Sphagnum farming → technical feasible
- ✓ Sphagnum biomass → valuable product
- \checkmark Societal perspective \rightarrow climate benefits proven, balanced provision of ecosystem services
- Major obstacles from farmer's point of view
 High investment, regulations inhibit transformation, no incentives for climate measure, ...

Challenge: Regional and national transition of peatland use & socio-economics

→ SF = only alternative combining productive use and substantial peat preservation

For further reading ©

Wichmann, S., Prager, A., Gaudig, G. (2017) Establishing *Sphagnum* cultures on bog grassland, cut-over bogs, and floating mats: procedures, costs and area potential in Germany.

Mires and Peat Volume 20, Article 03/2017: 1-19.

Wichmann, S., Krebs, M., Kumar, S., Gaudig, G. (2020) Paludiculture on former bog grassland: Profitability of Sphagnum farming in North West Germany.

Mires and Peat 26, 08/2020: 1-18.

wichmann@uni-greifswald.de

